Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes.
نویسندگان
چکیده
Legume-nodulating bacteria (rhizobia) usually produce N-acyl homoserine lactones, which regulate the induction of gene expression in a quorum-sensing (or population-density)-dependent manner. There is significant diversity in the types of quorum-sensing regulatory systems that are present in different rhizobia and no two independent isolates worked on in detail have the same complement of quorum-sensing genes. The genes regulated by quorum sensing appear to be rather diverse and many are associated with adaptive aspects of physiology that are probably important in the rhizosphere. It is evident that some aspects of rhizobial physiology related to the interaction between rhizobia and legumes are influenced by quorum sensing. However, it also appears that the legumes play an active role, both in terms of interfering with the rhizobial quorum-sensing systems and responding to the signalling molecules made by the bacteria. In this article, we review the diversity of quorum-sensing regulation in rhizobia and the potential role of legumes in influencing and responding to this signalling system.
منابع مشابه
Bacterial conversations : talking , listening and eavesdropping
Bacterial conversations: talking, listening and eavesdropping. An introduction 1115 I. Joint, J. Allan Downie & P. Williams Look who’s talking: communication and quorum sensing in the bacterial world 1119 P. Williams, K. Winzer, W. C. Chan & M. Cámara Cell–cell communication in the plant pathogen Agrobacterium tumefaciens 1135 C. E. White & S. C. Winans Quorum-sensing regulation in rhizobia and...
متن کاملRelationships among rhizobia from native Australian legumes.
Isolates from 12 legumes at three sites in Victoria showed a wide range of morphological, cultural, symbiotic, and serological properties. Isolates from Acacia longifolia var. sophorae and Kennedia prostrata were fast growing but nodulated ineffectively Macroptilium atropurpureum and all native legumes except Swainsonia lessertiifolia. Isolates from S. lessertiifolia showed anomalous properties...
متن کاملSecretion systems and signal exchange between nitrogen-fixing rhizobia and legumes
The formation of symbiotic nitrogen-fixing nodules on the roots and/or stem of leguminous plants involves a complex signal exchange between both partners. Since many microorganisms are present in the soil, legumes and rhizobia must recognize and initiate communication with each other to establish symbioses. This results in the formation of nodules. Rhizobia within nodules exchange fixed nitroge...
متن کاملLife Histories of Symbiotic Rhizobia and Mycorrhizal Fungi
Research on life history strategies of microbial symbionts is key to understanding the evolution of cooperation with hosts, but also their survival between hosts. Rhizobia are soil bacteria known for fixing nitrogen inside legume root nodules. Arbuscular mycorrhizal (AM) fungi are ubiquitous root symbionts that provide plants with nutrients and other benefits. Both kinds of symbionts employ str...
متن کاملThe Absence of the N-acyl-homoserine-lactone Autoinducer Synthase Genes traI and ngrI Increases the Copy Number of the Symbiotic Plasmid in Sinorhizobium fredii NGR234
Plant-released flavonoids induce the transcription of symbiotic genes in rhizobia and one of the first bacterial responses is the synthesis of so called Nod factors. They are responsible for the initial root hair curling during onset of root nodule development. This signal exchange is believed to be essential for initiating the plant symbiosis with rhizobia affiliated with the Alphaproteobacter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 362 1483 شماره
صفحات -
تاریخ انتشار 2007